Terran

New Member

Download miễn phí Tổng hợp đề thi và đáp áp chọn đội tuyển toán





Mục lục
1 Đề thi chọn đội tuyển toán 3
1.1 Đề thi chọn đội tuyển toán năm học 1989 - 1990
(Ngày thi: 16, 17/5/1990) . . . . . . . . . . . . . . . . . . . 3
1.2 Đề thi chọn đội tuyển toán năm học 1990 - 1991
(Ngày thi 8, 9/5/1991) . . . . . . . . . . . . . . . . . . . . . 4
1.3 Đề thi chọn đội tuyển năm học 1991 - 1992
(Ngày thi 19, 20/05/1992) . . . . . . . . . . . . . . . . . . . 6
1.4 Đề thi chọn đội tuyển toán năm học 1992 - 1993
(Ngày 4, 5/05/1993) . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Đề thi chọn đội tuyển toán năm học 1993 - 1994
(Ngày 18, 19/05/1994) . . . . . . . . . . . . . . . . . . . . . 8
1.6 Đề thi chọn đội tuyển toán năm học 1994 - 1995
(Ngày 5, 6/5/1995) . . . . . . . . . . . . . . . . . . . . . . . 9
1.7 Đề thi chọn đội tuyển toán năm học 1995 - 1996
(Ngày 17, 18/5/1996) . . . . . . . . . . . . . . . . . . . . . . 11
1.8 Đề thi chọn đội tuyển toán năm học 1996 - 1997
(Ngày 16, 17/5/1997) . . . . . . . . . . . . . . . . . . . . . . 12
1.9 Đề thi chọn đội tuyển toán năm học 1997 - 1998
(Ngày 13, 14/5/1998) . . . . . . . . . . . . . . . . . . . . . 13
1.10 Đề thi chọn đội tuyển năm học 2001 - 2002
(Ngày thi 7, 8/5/2002) . . . . . . . . . . . . . . . . . . . . . 14
1.11 Đề thi chọn đội tuyển toán năm học 2003 - 2004
(Ngày 7, 8/5/2004) . . . . . . . . . . . . . . . . . . . . . . . 15
2 Đáp án tuyển sinh 18
2.1 Đáp án chọn đội tuyển năm học 1991 - 1992 . . . . . . . . . 18
2.2 Đáp án chọn đội tuyển năm học 1992 - 1993 . . . . . . . . . 24
2.3 Đáp án chọn đội tuyển năm học 1993 - 1994 . . . . . . . . . 34
2.4 Đáp án chọn đội tuyển năm học 1994 - 1995 . . . . . . . . . 45
2.5 Đáp án chọn đội tuyển năm học 1995 - 1996 . . . . . . . . . 51
2.6 Đáp án chọn đội tuyển năm học 1996 - 1997 . . . . . . . . . 59
2.7 Đáp án chọn đội tuyển năm học 1997 - 1998 . . . . . . . . . 66
2.8 Đáp án chọn đội tuyển năm học 2001 - 2002 . . . . . . . . . 76
2.9 Đáp án chọn đội tuyển năm học 2003 - 2004 . . . . . . . . . 81



Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí

Tóm tắt nội dung tài liệu:

1+t
)2
+
(
1−t
2−t
)2

(
t2−t+1
(1+t)(2−t)
)2
2 t(1−t)
(1+t)(2−t)
dễ tính ϕ = 1
2
Vậy cosα = 1
2
.
b) Bán kính R đường tròn ngoại tiếp tam giác vừa xây dựng xác định
bởi
R =
MN
2 sinα
=
1√
3
MN
nên khi MN càng nhỏ thì R càng nhỏ.
Bài 2. a)
x2 + y2 + z2 + t2 −Nxyzt−N = 0 (1)
⇔ t(t−Nxyzt) = N − (x2 + y2 + z2) (2)
Với ba số nguyên dương bất kỳ a, b, c và N = a2+b2+c2 thì dễ thấy phương
trình (2) có nghiệm
x0 = a, y0 = b, z0 = c, t0 = Nabc = (a
2 + b2 + c2)abc (*)
Chú ý rằng khi hoán vị bốn số a, b, c,Nabc ta lại được nghiệm (x1, y1, z1, t1)
của phương trình (1).
b) Giả sử phương trình (1) có nghiệm nguyên dương, chọn (x0, y0, z0, t0)
là nghiệm nguyên dương của (1) sao cho tổng x0 + y0 + z0 + t0 là số nguyên
38 Chương 2. Đáp án tuyển sinh
dương nhỏ nhất. Không làm mất tính chất tổng quát, giả định rằng x0 6
y0 6 z0 6 t0.
Ta sẽ chứng minh rằng với N > 7 thì nghiệm nguyên dương của phương
trình (1) với x0 6 y0 6 z0 6 t0 nếu có phải có dạng (*) như trên.
Theo giả thiết t0 là nghiệm của phương trình bậc hai
t2 −Nx0y0z0t+ x20 + y20 + z20 −N = 0 (3)
Phương trình (3) có nghiệm thứ hai t1 thoả mãn:
t1 + t0 = Nx0y0z0 (4)
t1.t0 = x
2
0 + y
2
0 + z
2
0 −N (5)
Từ (4) suy ra t1 ∈ Z. Lại theo giả thiết
N(1 + x0y0z0t1) = t
2
1 + x
2
0 + y
2
0 + z
2
0 > 0
nên
t1 > − 1
x0y0z0
Vì t1 ∈ Z nên t1 > 0.
Giả sử t1 > 0 khi đó (x0, y0, z0, t1) là nghiệm nguyên dương của (1). Do
cách chọn (x0, y0, z0, t0) thì x0 + y0 + z0 + t1 > x0 + y0 + z0 + t0 nên t1 > t0.
Từ đó theo (5) ta có
t20 6 t1t0 = x20 + y20 + z20 −N < x20 + y20 + z20 6 3z20
Ta có
N(1+x0y0z
2
0) 6 N(1+x0y0z0t0) = x20+y20+z20+t20 6 z20+z20+z20+3z20 = 6z20
Từ đó, do N > 7 nên N(1 + x0y0z20) 6 6z20 < Nz20 suy ra 1 + x0y0z20 < z20.
Điều vô lý này chứng tỏ t1 > 0 là sai, suy ra t1 = 0. Từ (4), (5) suy ra
N = x20 + y
2
0 + z
2
0 và t0 = Nx0y0z0
là nghiệm (*) của phương trình (1).
Với N = 4k(8m+7) > 7, áp dụng kết quả trên thì N = x2 + y2 + z2. Do
đó nếu chứng minh được phương trình x2 + y2 + z2 = 4k(8m+ 7) không có
nghiệm nguyên dương thì phương trình (1) cũng không có nghiệm nguyên
dương.
+) Khi k = 0 ta có x2 + y2 + z2 = 8m+7 hay x2 + y2 + z2 ≡ 7 (mod 8).
Trong ba số x, y, z phải có một số lẻ hay cả ba số lẻ. Nếu số a lẻ thì a2 ≡ 1
(mod 8), do đó x2 + y2 + z2 6= 7 (mod 8).
2.3. Đáp án chọn đội tuyển năm học 1993 - 1994 39
+) Khi k > 0 ta có
x2 + y2 + z2 = 4k(8m + 7) (*)
hay x2+y2+z2 ≡ 0 (mod 4). Trong ba số x, y, z phải có một số chẵn hay ba
số chẵn. Nếu có một số chẵn, còn hai số a, b lẻ thì a2+b2 ≡ 2 (mod 4)), suy ra
x2+y2+z2 6= 7 (mod 8). Nếu x, y, z đều chẵn, đặt x = 2x1, y = 2y1, z = 2z1
thì (*) tương đương với x2 + y2 + z2 = 4k−1(8m + 7). Sau k lần biến đổi
như thế ta có x2 + y2 + z2 = 8m + 7, nhưng phương trình này vô nghiệm
nguyên dương như khi xét k = 0
Bài 3.a)
1 − 4x
x2
P (x) +
(
1 − 1 − 4x
x2
)
P ′(x)− P ′′(x) = 0 (1)
⇔ 1 − 4x
x2
(P (x)− P ′(x)) + (P ′(x)− P ′′(x)) = 0 (2)
Đặt Q(x) = P (x)− P ′(x) thì Q′(x) = P ′(x)− P ′′(x) nên
(2) ⇔ 1 − 4x
x2
Q(x) + Q′(x) = 0 (3)
b) Ta chứng minh nếu đa thức bậc bốn P (x) có bốn nghiệm dương thì
đa thức bậc bốn Q(x) = P (x) − P ′(x) cũng có bốn nghiệm dương. Không
mất tính chất tổng quát, giả định rằng hệ số bậc cao nhất của P (x) là 1.Đặt
P (x) = x4 − ax3 + bx2 − cx + d = (x− x1)(x− x2)(x− x3)(x− x4)
với x1, x2, x3, x4 là các nghiệm dương. Từ đó theo Định lý Viet thì a, b, c, d >
0.
P ′(x) = (x− x2)(x− x3)(x− x4) + (x− x1)(x− x3)(x− x4)+
+(x− x1)(x− x2)(x− x4) + (x− x1)(x− x2)(x− x3)
Q(x) = P (x)− P ′(x) = x4 + a1x3 + b1x2 + c1x+ c + d
Vì Q(x1)Q(x2) < 0, Q(x2)Q(x3) < 0, Q(x3)Q(x4) < 0 nên Q(x) có ba
nghiệm dương là y1, y2, y3. Gọi nghiệm thứ tư là y4 thì y1y2y3y4 = c+ d > 0
nên y4 > 0. Vậy Q(x) có bốn nghiệm dương.
c) Đặt R(t) = t4Q(1
t
). Vì Q(x) có bốn nghiệm dương thì R(t) cũng có
bốn nghiệm dương, do đó lại áp dụng kết quả trên, đa thức R(t) − R′(t)
cũng có bốn nghiệm dương.
R(t)−R′(t) = t4Q(1
t
)−
[
4t3Q(
1
t
)− t
4
t2
Q′(
1
t
)
]
= (t4 − 4t3)Q(1
t
) + t2Q′(
1
t
)
40 Chương 2. Đáp án tuyển sinh
Hay phương trình sau có bốn nghiệm dương
(t4 − 4t)Q(1
t
) + Q′(
1
t
) = 0 (4)
Đặt x = 1
t
thì phương trình (4) trở thành phương trình (3), nên phương
trình (3)
1 − 4x
x2
Q(x) + Q′(x) = 0
cũng có bốn nghiệm dương.
Bài 3. Đặt P1(x) = e
−xP (x). Vì đa thức P (x) có bốn nghiệm dương
nên phương trình P1(x) = 0 có bốn nghiệm dương. Suy ra, phương trình
P ′1(x) = 0 (1)
có ba nghiệm dương. Ta có:
(1) ⇔ e−x[P (x)− P ′(x)] = 0 ⇔ P (x)− P ′(x) = 0
Như vậy, đa thức Q(x) = P (x) − P ′(x) có ba nghiệm dương, giả sử là
x1, x2, x3. Tuy nhiên, do degQ(x) = 4 (vì degP (x) = 4) nên Q(x) còn có
nghiệm thực thứ tư x4.
Vì đa thức bậc bốn P (x) có bốn nghiệm dương nên không mất tổng
quát, có thể coi P (x) có dạng
P (x) = ax4 − bx3 + cx2 − dx + e, với a, b, c, d, e > 0
Từ đó
Q(x) = ax4 + · · · + (−d− 2c)x + (e+ d)
Suy ra (theo Định lý Viet)
x1x2x3x4 =
e + d
4
> 0 ⇒ x4 > 0
Vậy Q(x) có bốn nghiệm dương.
Xét đa thức (biến t):
R(t) = t4Q(
1
t
)
. Dễ thấy degR(t) = 4, R(t) có bốn nghiệm dương. Do đó, theo kết quả
phần trên ta có phương trình
R(t)−R′(t) = 0 (2)
2.3. Đáp án chọn đội tuyển năm học 1993 - 1994 41
có bốn nghiệm dương. Ta có
(2) ⇔ t4[P (1
t
)− P ′(1
t
)]− {t4[P (1
t
)− P ′(1
t
)]}′ = 0
⇔ t4[P (1
t
)− P ′(1
t
)]− {4t3[P (1
t
)− P ′(1
t
)] + t4[− 1
t2
P ′(
1
t
) +
1
t2
P ′′(
1
t
)]}
⇔ (t2 − 4t)P (1
t
) + (1 + 4t− t2)P ′(1
t
)− P ′′(1
t
) = 0 (3)
Đặt 1
t
= x. Từ phương trình (3) ta có phương trình (ẩn x):
1− 4x
x2
P (x) +
(
1− 1 − 4x
x2
)
P ′(x)− P ′′(x) = 0 (4)
Do (3) có bốn nghiệm dương nên phương trình (4) có bốn nghiệm dương.
(Đpcm).
Bài 4. Lấy tâm O của tam giác đều ABC làm gốc của mặt phẳng phức
C, coi A,B,C có toạ vị a, b, c thì b = ae 2ipi3 , c = ae 4ipi3 . Nếu gọi M có toạ vị
z0 thì A
′, B′, C ′ có toạ vị a′ = 2z0 − a, b′ = 2z0 − b, c′ = 2z0 − c.
Gọi P là điểm mà B′AP là "tam giác" đều định hướng thuận (có thể
suy biến thành 1 điểm nếu B′ ≡ A) tức P có toạ vị p′ mà p−b′ = e ipi3 (a−b′).
Vậy với chú ý b = ce
−2ipi
3 , a + b + c = 0, và 1 − e ipi3 = e−ipi3 , e−2ipi3 − e ipi3 =
e
ipi
3 (eipi − 1) = 0 ta có
p = b′ + e
ipi
3 (a− b′) = 2z0 + b + e ipi3 (a− 2z0 + b)
= 2z0 + ce
−2ipi
3 − e ipi3 (c + 2z0)
= 2z0(1− e ipi3 ) + c(e−2ipi3 − e ipi3 )
= 2z0e
−ipi
3
Vì kết quả không phụ thuộc a, b, c nên bằng cách hoán vị vòng quanh
A,B,C được C ′BP,A′CP cũng là tam giác đều định hướng thuận. Vậy P
cách đều B′ và A, C ′ và B, A′ và C.
42 Chương 2. Đáp án tuyển sinh
Nếu còn có Q 6= P cách đều các cặp điểm đó thì −→PQ 6= −→0 trực giao với−−→
AB′,
−−→
BC ′,
−−→
CA′ khi đó ba véctơ này cùng phương tức là O cùng các điểm có
toạ vị b′ − a = 2z0 + c, c′ − b = 2z0 + a, a′ − c = 2z0 + b phải thẳng hàng,
khi đó O và các điểm có toạ vị a− b = a(1− e 2ipi3 ), a− c = a(1− e 4ipi3 ) phải
thẳng hàng là điều vô lý.
b) Xét biểu thức đồng dạng f xác định bởi z0 7→ f(z0) = p = 2z0e−ipi3
(tích quay góc −pi
3
với vị trí tỷ số 2 cùng tâm O). Trung điểm D của AB có
toạ vị a+b
2
nên f(D) có toạ vị (a + b)e
−ipi
3 = −ce−ipi3 = −ae 4ipi3 e−ipi3 = a, vậy
f(D) = A. Vậy có biến đổi đồng dạng f, f(0) = 0, f(D) = A, f(M) = P , từ
đó f biến đường thẳng DM(M 6= D) thành ...
 

Các chủ đề có liên quan khác

Top