cobekieusa_128

New Member
Download 270 bài toán bồi dưỡng học sinh giỏi Lớp 8

Download 270 bài toán bồi dưỡng học sinh giỏi Lớp 8 miễn phí





231. Một miếng bìa hình vuông có cạnh 3 dm. Ở mỗi góc của hình vuông lớn, ng-ời ta cắt đi một hình vuông nhỏ rồi gấp bìa để đ¬ợc một cái hộp hình hộp chữ nhật không nắp. Tính cạnh hình vuông nhỏ để thể tích của hộp là lớn nhất.



++ Ai muốn tải bản DOC Đầy Đủ thì Trả lời bài viết này, mình sẽ gửi Link download cho!

Tóm tắt nội dung:

số.
259. Phân tích thành nhân tử : (x 1).
260. Trong tất cả các hình chữ nhật có đường chéo bằng 8, hãy tìm hình chữ nhật có diện tích lớn nhất.
261. Cho tam giác vuông ABC có các cạnh góc vuông là a, b và cạnh huyền là c. Chứng minh rằng ta luôn có : .
262. Cho các số dơng a, b, c, a, b, c. Chứng minh rằng :
Nếu .
263. Giải phương trình : | x2 1 | + | x2 4 | = 3.
264. Chứng minh rằng giá trị của biểu thức C không phụ thuộc vào x, y :
với x > 0 ; y > 0.
265. Chứng minh giá trị biểu thức D không phụ thuộc vào a:
với a > 0 ; a 1
266. Cho biểu thức .
a) Rút gọn biểu thức B.
b) Tính giá trị của biểu thức B khi c = 54 ; a = 24
c) Với giá trị nào của a và c để B > 0 ; B < 0.
267. Cho biểu thức : với m 0 ; n 1
a) Rút gọn biểu thức A. b) Tìm giá trị của A với .
c) Tìm giá trị nhỏ nhất của A.
268. Rút gọn
269. Cho với x 0 ; x 1.
a) Rút gọn biểu thức P. b) Tìm x sao cho P < 0.
270. Xét biểu thức .
a) Rút gọn y. Tìm x để y = 2. b) Giả sử x > 1. Chứng minh rằng : y - | y | = 0
c) Tìm giá trị nhỏ nhất của y ?
PHẦN II: HƯỚNG DẪN GIẢI
1. Giả sử là số hữu tỉ Þ (tối giản). Suy ra (1). Đẳng thức này chứng tỏ mà 7 là số nguyên tố nên m 7. Đặt m = 7k (k Î Z), ta có m2 = 49k2 (2). Từ (1) và (2) suy ra 7n2 = 49k2 nên n2 = 7k2 (3). Từ (3) ta lại có n2 7 và vì 7 là số nguyên tố nên n 7. m và n cùng chia hết cho 7 nên phân số không tối giản, trái giả thiết. Vậy không phải là số hữu tỉ; do đó là số vô tỉ.
2. Khai triển vế trái và đặt nhân tử chung, ta đợc vế phải. Từ a) Þ b) vì (ad bc)2 0.
3. Cách 1 : Từ x + y = 2 ta có y = 2 - x. Do đó : S = x2 + (2 - x)2 = 2(x - 1)2 + 2 2.
Vậy min S = 2 Û x = y = 1.
Cách 2 : Áp dụng bất đẳng thức Bunhiacopxki với a = x, c = 1, b = y, d = 1, Ta có :(x + y)2 (x2 + y2)(1 + 1) Û 4.2(x2 + y2) = 2S Û S.2 Þ mim S = 2 khi x = y = 1
4. b) Áp dụng bất đẳng thức Cauchy cho các cặp số dơng , ta lần lợt có: ; cộng từng vế ta đợc bất đẳng thức cần chứng minh. Dấu bằng xảy ra khi a = b = c.
c) Với các số dương 3a và 5b , theo bất đẳng thức Cauchy ta có : Û (3a + 5b)2 4.15P (vì P = a.b) Û 122 60P
Û P Þ max P = .
Dấu bằng xảy ra khi 3a = 5b = 12 : 2 Û a = 2 ; b = 6/5.
5. Ta có b = 1 - a, do đó M = a3 + (1 - a)3 = -(3a2 + 3a) . Dấu = xảy ra khi a = .
Vậy min M = Û a = b = .
6. Đặt a = 1 + x Þ b3 = 2 - a3 = 2 - (1 + x)3 = 1 - 3x - 3x2 -x3 = -(1 + 3x + 3x2 +x3 = -(1 + x)3.
Suy ra : b 1 x. Ta lại có a = 1 + x, nên : a + b 1 + x + 1 x = 2.
Với a = 1, b = 1 thì a3 + b3 = 2 và a + b = 2. Vậy max N = 2 khi a = b = 1.
7. Hiệu của vế trái và vế phải bằng (a b)2(a + b).
8. Vì | a + b | 0 , | a b | 0 , nên : | a + b | > | a b | Û a2 + 2ab + b2 a2 2ab + b2 Û 4ab > 0 Û ab > 0. Vậy a và b là hai số cùng dấu.
9. a) Xét hiệu : (a + 1)2 4a = a2 + 2a + 1 4a = a2 2a + 1 = (a 1)2 0.
b) Ta có : (a + 1)2 4a ; (b + 1)2 4b ; (c + 1)2 4c và các bất đẳng thức này có hai vế đều dơng, nên : [(a + 1)(b + 1)(c + 1)]2 64abc = 64.1 = 82. Vậy (a + 1)(b + 1)(c + 1) 8.
10. a) Ta có : (a + b)2 + (a b)2 = 2(a2 + b2). Do (a b)2 0, nên (a + b) 2 2(a2 + b2).
b) Xét : (a + b + c)2 + (a b)2 + (a c)2 + (b c)2. Khai triển và rút gọn, ta đợc :
3(a2 + b2 + c2). Vậy : (a + b + c)2 3(a2 + b2 + c2).
11. a)
b) x2 4x 5 Û (x 2)2 33 Û | x 2 | 3 Û -3 x 2 3 Û -1 x 5.
c) 2x(2x 1) 2x 1 Û (2x 1)2 0. Nhng (2x 1)2 0, nên chỉ có thể : 2x 1 = 0
Vậy : x = .
12. Viết đẳng thức đã cho dưới dạng : a2 + b2 + c2 + d2 ab ac ad = 0 (1). Nhân hai vế của (1) với 4 rồi đa về dạng : a2 + (a 2b)2 + (a 2c)2 + (a 2d)2 = 0 (2). Do đó ta có :
a = a 2b = a 2c = a 2d = 0 . Suy ra : a = b = c = d = 0.
13. 2M = (a + b 2)2 + (a 1)2 + (b 1)2 + 2.1998 2.1998 Þ M 1998.
Dấu = xảy ra khi có đồng thời : Vậy min M =1998Ûa = b= 1.
14. Giải tương tự bài 13.
15. Đa đẳng thức đã cho về dạng : (x 1)2 + 4(y 1)2 + (x 3)2 + 1 = 0.
16. .
17. a) . Vậy < 7
b) .
c) .
d) Giả sử .
Bất đẳng thức cuối cùng đúng, nên : .
18. Các số đó có thể là 1,42 và
19.Viết lại phương trình dưới dạng :
.
Vế trái của phương trình không nhỏ hơn 6, còn vế phải không lớn hơn 6. Vậy đẳng thức chỉ xảy ra khi cả hai vế đều bằng 6, suy ra x = -1.
20. Bất đẳng thức Cauchy viết lại dưới dạng (*) (a, b 0).
Áp dụng bất dẳng thức Cauchy dưới dạng (*) với hai số dương 2x và xy
Ta được :
Dấu = xảy ra khi : 2x = xy = 4 : 2 tức là khi x = 1, y = 2. Þ max A = 2 Û x = 2, y = 2.
21. Bất đẳng thức Cauchy viết lại dưới dạng : .
Áp dụng ta có S > .
22. Chứng minh như bài 1.
23. a) . Vậy
b) Ta có : .
Theo câu a :
Từ câu b suy ra : . Vì (câu a).
Do đó :.
24. a) Giả sử = m (m : số hữu tỉ) Þ = m2 1 Þ là số hữu tỉ (vô lí)
b) Giả sử m + = a (a : số hữu tỉ) Þ = a m Þ = n(a m) Þ là số hữu tỉ, vô lí.
25. Có, chẳng hạn
26. Đặt . Dễ dàng chứng minh nên a2 4, do đó
| a | 2 (1). Bất đẳng thức phải chứng minh tương đương với : a2 2 + 4 3a
Û a2 3a + 2 0 Û (a 1)(a 2) 0 (2)
Từ (1) suy ra a 2 hay a -2. Nếu a 2 thì (2) đúng. Nếu a -2 thì (2) cũng đúng. Bài toán đợc chứng minh.
27. Bất đẳng thức phải chứng minh tương đương với :
.
Cần chứng minh tử không âm, tức là : x3z2(x y) + y3x2(y z) + z3y2(z x) 0. (1)
Biểu thức không đổi khi hoán vị vòng x à y à z à x nên có thể giả sử x là số lớn nhất. Xét hai trường hợp :
a) x y z > 0. Tách z x ở (1) thành (x y + y z), (1) tương đương với :
x3z2(x y) + y3x2(y z) z3y2(x y) z3y2(y z) 0
Û z2(x y)(x3 y2z) + y2(y z)(yx2 z3) 0
Dễ thấy x y 0 , x3 y2z 0 , y z 0 , yx2 z3 0 nên bất đẳng thức trên đúng.
b) x z y > 0. Tách x y ở (1) thành x z + z y , (1) tơng đơng với :
x3z2(x z) + x3z2(z y) y3x2(z y) z3y2(x z) 0
Û z2(x z)(x3 zy2) + x2(xz2 y3)(z y) 0
Dễ thấy bất đẳng thức trên dúng.
Cách khác : Biến đổi bất đẳng thức phải chứng minh tương đương với :
.
28. Chứng minh bằng phản chứng. Giả sử tổng của số hữu tỉ a với số vô tỉ b là số hữu tỉ c. Ta có : b = c a. Ta thấy, hiệu của hai số hữu tỉ c và a là số hữu tỉ, nên b là số hữu tỉ, trái với giả thiết. Vậy c phải là số vô tỉ.
29. a) Ta có : (a + b)2 + (a b)2 = 2(a2 + b2) Þ (a + b)2 2(a2 + b2).
b) Xét : (a + b + c)2 + (a b)2 + (a c)2 + (b c)2. Khai triển và rút gọn ta đợc :
3(a2 + b2 + c2). Vậy : (a + b + c)2 3(a2 + b2 + c2)
c) Tương tự nh câu b
30. Giả sử a + b > 2 Þ (a + b)3 > 8 Û a3 + b3 + 3ab(a + b) > 8 Û 2 + 3ab(a + b) > 8
Þ ab(a + b) > 2 Þ ab(a + b) > a3 + b3. Chia hai vế cho số dương a + b : ab > a2 ab + b2
Þ (a b)2 < 0, vô lí. Vậy a + b 2.
31. Cách 1: Ta có : x ; y nên + x + y. Suy ra + là số nguyên không vợt quá x + y (1). Theo định nghĩa phần nguyên, là số nguyên lớn nhất không vợt quá x + y (2). Từ (1) và (2) suy ra : + .
Cách 2 : Theo định nghĩa phần nguyên : 0 x - < 1 ; 0 y - < 1.
Suy ra : 0 (x + y) ( + ) < 2. Xét hai trường hợp :
Nếu 0 (x + y) ( + ) < 1 thì = + (1)
Nếu 1 (x + y) ( + ) < 2 thì 0 (x + y) ( + + 1) < 1 nên = + + 1 (2). Trong cả hai trường hợp ta đều có : + +
32. Ta có x2 6x + 17 = (x 3)2 + 8 8 nên tử và mẫu của A là các số dương , suy ra A > 0 do đó : A lớn nhất Û nhỏ nhất Û x2 6x + 17 nhỏ nhất.
Vậy max A = Û x = 3.
33. Không được dùng phép hoán vị vòng quanh x à y à z à x và giả sử x y z.
Cách 1 : Áp dụng bất đẳng thức Cauchy cho 3 số dương x, y, z :
Do đó
Cách 2 : Ta có : . Ta đã có (do x, y > 0) nên để chứng minh ta cần chứng minh:(1)
(1) Û xy + z2 yz xz (nhân hai vế với số dơng xz)
Û xy + z2 yz xz 0 Û y(x z) z(x z) 0 Û (x z)(y z) 0 (2)
(2) đúng với giả thiết rằng z là số nhỏ nhất trong 3 số x, y, z, do đó (1) đúng. Từ đó tìm đợc giá trị nhỏ nhất của .
34. Ta có x + y = 4 Þ x2 + 2xy + y2 =...
 
Top